Stoke Gabriel Primary School
 Mathematics Curriculum Plan Years 1-6

Intent

Through the teaching and learning of Maths, our intention is that every child at Stoke Gabriel Primary School :

- develops a sound understanding of number
- can explain and justify their thinking around mathematical concepts
- has a rich mathematical vocabulary
- develops their creative thinking skills through mathematical reasoning and problem solving
- becomes fluent and efficient in all four operations
- understands that a secure knowledge of key number facts allows them to become efficient mathematicians
- understands the importance of Maths in everyday life.

The intention of our mathematics curriculum is to provide a rich, engaging and balanced curriculum which builds systematically and cohesively on mathematical knowledge and skills. It provides opportunities for children of all abilities to be stretched and challenged in their learning. It fosters resilience, courage and a can do attitude; the children are encouraged to embrace their mistakes as part of the learning process and to recognise that there are a variety of methods to arrive at an answer. They will recognise the importance of mathematical knowledge and skills in other aspects of their learning and in the wider world beyond.

Implementation

We use the White Rose Maths hub materials across the school. To provide further challenge at greater depth, teachers use a variety of resources such as 'nrich' and the 'NCTEM'. We have adopted much of the mastery approach in our lessons, however there are times when those children working at greater depth work independently from the rest of the class. This is when teachers are confident that those children have already demonstrated fluency and mastery of a concept. Teachers use pre-teaching to set tasks for these children where appropriate so that they work at greater depth. Greater depth tasks are highlighted in yellow in maths books to signal where a child has accessed learning at greater depth. Fluency in arithmetic is supported by our calculation policy which ensures consistency across the school.
At all stages of their learning children are expected to explain and justify their reasoning orally and when appropriate in writing. They are expected to be able to explain their mathematical thinking using mathematical vocabulary. Questioning from the teachers ensures that children are exposed to challenge and given the opportunity to develop their thinking. The use of talk - partners in pairs and triads are used to develop the children's reasoning and explanation. ‘How do you know?', 'Prove it' and `Do you agree?`, are used frequently. Responses are expected in full sentences using mathematical vocabulary and sentence stems are used to encourage this.
In written feedback to the children, teachers highlight mistakes in orange and the children are expected to correct the mistakes independently. Teachers also ask the children to:
' A ' - Show another way
' \mathbf{P} ' - Prove it
' E '- Explain it

This allows the teachers to assess for mastery and helps to secure the knowledge and understanding for the children.
Manipulatives are used throughout the school to help the children understand and grasp mathematical concepts. They are encouraged to use manipulatives to help them with their reasoning, problem-solving and understanding at every stage of their learning. Children build on this concrete approach by using pictorial representations which allow them to demonstrate their reasoning and understanding before moving on to abstract maths once the foundations are firmly in place.
Where appropriate, at the beginning of a new unit teachers use elicitation tasks to inform their planning and to ensure that all children are provided with the right level of challenge. New content is taught through small steps to support children in their learning journey. Scaffolding is provided to ensure that children have the necessary support they need before learning independently. Teachers use differentiated questioning to elicit feedback from children to explore and address any misconceptions in learning. Misconceptions are addressed in class whenever possible through supported practice. Teachers also address misconceptions in small groups during assembly time at the start of the afternoon.
Knowledge of number facts is built in a variety of ways, including weekly paper based tests and online platforms such as times table rockstars.
Teachers also refer to the Maths Suitcase to remind children of the skills that they need in order to become proficient mathematicians. The suitcase was 'packed' in consultation with the children. The idea is that the children get out their maths suitcase ready for their maths learning

Impact

All children at Stoke Gabriel will make at least expected progress in Maths by the end of Key Stage 2. Attainment will be above the national average in SATS at key stage 1 and 2 and in the times table test for year 4.
Impact across the school is monitored internally through regular book looks, lesson drop ins and pupil conferencing. Internal data is used to monitor progress once a term to verify the impact of teaching and learning of maths.
The children will develop confidence, understanding and enjoyment in mathematics along with a comprehensive set of problem-solving skills and strategies to take with them to the next stage of their education. They will demonstrate flexibility, resilience and courage in their approach to problem solving and reasoning. They will be engaged and challenged and able to quickly recall (and apply) facts and methods to help deepen their understanding and develop fluency. They will use mathematics effectively in a wide variety of situations and will be able to present a clear justification or argument relating to a problem using mathematical language. They will understand the relevance of what they are learning in relation to real world concepts and develop a sense of curiosity about the subject.

THE SKILLS \& LEARNING BEHAVIOURS OF A MATHEMATICIAN

Be creative- make connections,
visualise, be flexible in your approach,
be enthusiastic

Be inquisitive- ask questions, problem solve, analyse

Demonstrate courage and resistance check and work out an answer, estimate and prove, be persistence, persevere, be resilient

Be active- Reason, predict and explain your answer and thinking clearly, organise your thinking systematically Be organised- present work neatly and aim for accuracy

FACTS KNOWLEDGE AND

 VOCABULARYSubject specific vocabulary relating to number and place value, calculation, geometry, measurement and statistics.

Knowledge of key facts e.g. number bonds and times tables.

Understanding of how maths links to the real world.

An understanding of place value and subitizing.

RESOURCES REQUIRED

Be able to use a variety of resources to represent your mathematical thinking.

Progressive curriculum plan					
Number and place value					
Counting					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of $4,8,50$ and 100;	count in multiples of 6, 7, 9,25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1 000000	
given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
Comparing numbers					
use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100; use <, > and = signs	compare and order numbers up to 1000	order and compare numbers beyond 1000	order and compare numbers to at least 1 000000 and determine the value of each digit	order and compare numbers up to 10000 000 and determine the value of each digit
Identifying, representing and estimating numbers					
identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		

Reading and writing numbers (including Roman numerals)					
read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words	read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1000000 and determine the value of each digit	read, write, order and compare numbers up to 10000000 and determine the value of each digit
		tell and write the time from an analogue clock, including using Roman numerals from I to XII		read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	
Understanding place value					
	recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	read, write, order and compare numbers up to 10000000 and determine the value of each digit
)		identify the value of each digit to three decimal places and multiply and divide numbers by 10 , 100 and 1000 where the answers are up to three decimal places
Rounding					
			round any number to the nearest 10,100 or 1 000	round any number up to 1000000 to the nearest $10,100,1000$, 10000 and 100000	round any whole number to a required degree of accuracy
			round decimals with one decimal place to	round decimals with two decimal places to	solve problems which require answers to be

Community, Courage, Character, Creativity

		the nearest whole number	the nearest whole number and to one decimal place	rounded to specified degrees of accuracy
Problem solving				
use place value and number facts to solve problems	solve number problems and practical problems involving these ideas.	solve number and practical problems that involve all of the above and with increasingly large positive numbers	solve number problems and practical problems that involve all of the above	solve number and practical problems that involve all of the above

Addition and subtraction					
Number bonds					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Mental calculation					
add and subtract onedigit and two-digit numbers to 20, including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers

	* adding three onedigit numbers				
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				use their knowledge of the order of operations to carry out calculations involving the four operations
Written methods					
read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
Inverse operations, estimating and checking answers					
	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
Problem solving					

solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ * 9	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
	solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change				Solve problems involving addition, subtraction, multiplication and division

Multiplication and division					
Multiplication and division facts					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of 4, 8, 50 and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1 000000 (copied from Number and Place Value)	

	mental and progressing to formal written methods			
			divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context	divide numbers up to 4digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
				use written division methods in cases where the answer has up to two decimal places (copied from Fractions)
Properties of numbers: multiples, factors, primes, square and cube numbers				
		recognise and use factor pairs and commutativity in mental calculations	identify multiples and factors, including finding all factor pairs of a number, and	identify common factors, common multiples and prime numbers

				common factors of two numbers. know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19	
				recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	
Order of operations					
					use their knowledge of the order of operations to carry out calculations involving the four operations
Inverse operations, estimating and checking answers					
		estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation		use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy
Problem solving					

solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to mobjects	solve problems involving multiplying and adding, including using the distributive law to multiply twodigit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
				solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
				solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	

Fractions, decimals and percentages					
Counting in fractional steps					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Pupils should count in fractions up to 10 , starting from any number and using the $1 / 2$ and $2 / 4$ equivalence on the	count up and down in tenths	count up and down in hundredths		

	number line (Non Statutory Guidance)				
Recognising fractions					
recognise, find and name a half as one of two equal parts of an object, shape or quantity recognise, find and name a quarter as one of four equal parts of an object, shape or quantity	recognise, find, name and write fractions ${ }^{1} / 3^{\prime}$, $1 / 4^{\prime}{ }^{2} / 4$ and ${ }^{3} / 4$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10. recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	
	Comparing fractions				
		compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1
Comparing decimals					
			compare numbers with the same number of decimal places up to two decimal places	read, write, order and compare numbers with up to three decimal places	identify the value of each digit in numbers given to three decimal places

Rounding including decimals				
		round decimals with one decimal place to the nearest whole number	round decimals with two decimal places to the nearest whole number and to one decimal place	solve problems which require answers to be rounded to specified degrees of accuracy
Equivalence				
write simple fractions e.g. ${ }^{1} / 2$ of $6=3$ and recognise the equivalence of ${ }^{2} / 4$ and $1 / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths	use common factors to simplify fractions; use common multiples to express fractions in the same denomination
		recognise and write decimal equivalents of any number of tenths or hundredths	read and write decimal numbers as fractions (e.g. $0.71={ }^{71} /{ }_{100}$) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$)
		recognise and write decimal equivalents to ${ }^{1} / 4^{\prime}{ }^{1} / z^{3} / 4$	recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
Addition and subtraction of fractions				

		find the effect of dividing a one- or twodigit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths		multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places
				identify the value of each digit to three decimal places and multiply and divide numbers by 10 , 100 and 1000 where the answers are up to three decimal places
				associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$)
				use written division methods in cases where the answer has up to two decimal places
Problem solving				
	solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	solve problems involving numbers up to three decimal places	

			solve simple measure and money problems involving fractions and decimals to two decimal places.	solve problems which require knowing percentage and decimal equivalents of $1 / 2^{\prime}, 4^{\prime}$ $1 / 5^{\prime},{ }^{2} / 5^{\prime}{ }^{4} / 5$ and those with a denominator of a multiple of 10 or 25.	

Ratio and proportion								Year 6			solve problems involving the relative sizes of two quantities where missing values can be found by using integer multiplication and division facts
				solve problems involving the calculation of percentages [for example 15\% of 360] and the use of percentages for comparison							
				solve problems involving similar shapes where the scale factor is known or can be found							
				solve problems involving unequal sharing and grouping using knowledge of fractions and multiples.							

Algebra					
Equations					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$ *9	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems.	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. solve problems, including missing number problems, involving multiplication and division, including integer scaling			express missing number problems algebraically
					find pairs of numbers that satisfy number sentences involving two unknowns
					enumerate all possibilities of combinations of two variables
Formulae					
					use simple formulae

			Perimeter can be expressed algebraically as 2($a+b$) where a and b are the dimensions in the same unit.		
Sequences					
					generate and describe linear number sequences

Measurement					
Comparing and estimating					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] * mass/weight [e.g. heavy/light, heavier than, lighter than] * capacity and volume [e.g. full/empty, more than, less than,	compare and order lengths, mass, volume/capacity and record the results using $>$, < and =		estimate, compare and calculate different measures, including money in pounds and pence	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes (also included in measuring) estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres $\left(m^{3}\right)$, and extending to other units such as mm^{3} and km^{3}.

half, half full, quarter] * time [e.g. quicker, slower, earlier, later]				cuboids) and capacity (e.g. using water)	
sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
Measuring and calculating					
measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers,	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$)	estimate, compare and calculate different measures, including money in pounds and pence	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate

	scales, thermometers and measuring vessels				
		measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa
recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	add and subtract amounts of money to give change, using both $£$ and p in practical contexts			
			find the area of rectilinear shapes by counting squares	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres $\left(m^{2}\right)$ and	calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic

				estimate the area of irregular shapes	centimetres $\left(\mathrm{cm}^{3}\right)$ and cubic metres (m^{3}), and extending to other units [e.g. mm^{3} and km^{3}]. recognise when it is possible to use formulae for area and volume of shapes
Telling the time					
tell the time to the hour and half past the hour and draw the hands on a clock face to show these times.	tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times.	tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24hour clocks	read, write and convert time between analogue and digital 12 and 24hour clocks (appears also in Converting)		
recognise and use language relating to dates, including days of the week, weeks, months and years	know the number of minutes in an hour and the number of hours in a day.	estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight			
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	solve problems involving converting between units of time	

Community, Courage, CharaCter, Creativity

Converting				
know the number of minutes in an hour and the number of hours in a day.	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
		read, write and convert time between analogue and digital 12 and 24hour clocks	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate
		solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days	understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	convert between miles and kilometres

Identifying shapes and their properties					
Year 1	Year 2	Year 3		Year 5	Year 6
Recognise and name common 2-D and 3-D shapes, including: * 2-D shapes [e.g. rectangles (including squares), circles and triangles] * 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line		identify lines of symmetry in 2-D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2-D representations	recognise, describe and build simple 3-D shapes, including making nets
	identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and
	identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]				is twice the radius
Drawing and constructing					
		draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them	complete a simple symmetric figure with respect to a specific line of symmetry	draw given angles, and measure them in degrees (${ }^{\circ}$)	draw 2-D shapes using given dimensions and angles
					recognise, describe and build simple 3-D shapes, including making nets
Comparing and classifying					
	compare and sort common 2-D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on	use the properties of rectangles to deduce related facts and find missing lengths and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles,

		their properties and sizes	distinguish between regular and irregular polygons based on reasoning about equal sides and angles	quadrilaterals, and regular polygons
Angles				
	recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
	identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: * angles at a point and one whole turn (total 360°) * angles at a point on a straight line and $1 / 2 a$ turn (total 180°) other multiples of 90°	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
	identify horizontal and vertical lines and pairs of perpendicular and parallel lines			

Geometry: Position and direction					
Position, direction and movement					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
describe position, direction and movement, including	use mathematical vocabulary to describe position, direction and movement including		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation,	describe positions on the full coordinate grid (all four quadrants)

Statistics					
Interpreting, constructing and presenting data					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				

	ask and answer questions about totalling and comparing categorical data				
Solving problems					
		solve one-step and twostep questions [e.g. ‘How many more?’ and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average

